Abstract

Pd-impregnated Ce-based catalysts were tested for carbon monoxide (CO) and hydrocarbon (HC) oxidation under challenging low-temperature diesel combustion conditions. The results indicate that the light-off temperatures for CO over Pd/CeO2, Pd/MnO x -CeO2 (Pd/MC), and Pd/SnO2-MnO x -CeO2 (Pd/SMC) catalysts shift to higher temperatures in the presence of simulated diesel exhaust gas. The lowest T 50 for CO is observed over Pd/MC at 173 °C, whereas Pd/CeO2 is shown to oxidize most of the HCs at temperatures below 400 °C. In all catalysts, the oxidation of HCs starts right after the onset of CO oxidation, revealing that the competitive adsorption of CO, NO, and alkenes controls the catalytic activity. Further evaluation of the catalytic activity in the presence of only CO and C3H6 reveals the immediate inhibiting effect of C3H6 at catalyst temperatures below 150 °C. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments performed over Pd/CeO2, Pd/MC, and Pd/SMC show that C3H6 inhibits the formation of carbonyl species on Pd n+ sites, which limits the catalytic activity for CO. Such inhibition is observed on all supports, implying that the activity is independent of oxygen storage capacity (OSC) or lattice oxygen reducibility of the supports in the presence of C3H6.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call