Abstract

Based on the variational principle of the potential energy, the element-free Galerkin method is developed using radial basis interpolation functions to evaluate static and dynamic mixed-mode stress intensity factors. For dynamic problems, the Laplace transform technique is used to transform the time domain problem to the frequency domain. The so-called enriched radial basis functions are introduced to capture accurately the singularity of stress at crack tip. In this approach, connectivity of the mesh in the domain or integrations with fundamental or particular solutions are not required. The accuracy and convergence of the mesh-free Galerkin method with enriched radial basis functions for the two-dimensional static and dynamic fracture mechanics are demonstrated through several benchmark examples. Comparisons have been made with benchmarks and solutions obtained by the boundary element method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.