Abstract

Mixed integer programming (MIP) formulations for scheduling problems can be classified based on the decision variables upon which they rely. In this paper, four different MIP formulations based on four different types of decision variables are presented for various parallel machine scheduling problems. The goal of this research is to identify promising optimization formulation paradigms that can subsequently be used to either (1) solve larger practical scheduling problems of interest to optimality and/or (2) be used to establish tighter lower solution bounds for those under study. We present the computational results and discuss formulation efficacy for total weighted completion time and maximum completion time problems for the identical parallel machine case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.