Abstract
Mineral hydrocarbons consist of two fractions, mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH). MOAH is a potential public health hazard because it may include carcinogenic polycyclic compounds. In the present study, 400 MHz nuclear magnetic resonance (NMR) spectroscopy was introduced, in the context of official controls, to measure MOSH and MOAH in raw materials or pure mineral hydrocarbon final products (cosmetics and medicinal products). Quantitative determination (qNMR) has been established using the ERETIC methodology (electronic reference to access in vivo concentrations) based on the PULCON principle (pulse length based concentration determination). Various mineral hydrocarbons (e.g., white oils, paraffins or petroleum jelly) were dissolved in deuterated chloroform. The ERETIC factor was established using a quantification reference sample containing ethylbenzene and tetrachloronitrobenzene. The following spectral regions were integrated: MOSH δ 3.0 - 0.2 ppm and MOAH δ 9.2 - 6.5, excluding solvent signals. Validation showed a sufficient precision of the method with a coefficient of variation <6% and a limit of detection <0.1 g/100 g. The applicability of the method was proven by analysing 27 authentic samples with MOSH and MOAH contents in the range of 90-109 g/100 g and 0.02-1.10 g/100g, respectively. It is important to distinguish this new NMR-approach from the hyphenated liquid chromatography-gas chromatography methodology previously used to characterize MOSH/MOAH amounts in cosmetic products. For mineral hydrocarbon raw materials or pure mineral hydrocarbon-based cosmetic products, NMR delivers higher specificity without any sample preparation besides dilution. Our sample survey shows that previous methods may have overestimated the MOAH amount in mineral oil products and opens new paths to characterize this fraction. Therefore, the developed method can be applied for routine monitoring of consumer products aiming to minimize public health risks.
Highlights
Mineral oil hydrocarbons were suggested as important contaminants of the human body, with possible routes of contamination including air inhalation, food intake, and dermal absorption
A correlation was found between the use of cosmetic products, such as creams or lipsticks, and mineral oil saturated hydrocarbons (MOSH) in human fat tissue and in milk samples collected from women[1]
The current method of choice for analysis of hydrocarbons is the application of an online coupled liquid chromatography-gas chromatography with flame ionization detection (LC-GC-FID), which leads to two fractions quantified as sum parameters, MOSH and MOAH4
Summary
Mineral oil hydrocarbons were suggested as important contaminants of the human body, with possible routes of contamination including air inhalation, food intake, and dermal absorption. A correlation was found between the use of cosmetic products, such as creams or lipsticks, and mineral oil saturated hydrocarbons (MOSH) in human fat tissue and in milk samples collected from women[1]. For monitoring of cosmetic products and medicinal products aiming for health risk assessment, a scarcity of analytical methods was noted. This may be explained because the analysis of mineral oil constituents is extremely difficult, and because of their complexity it has been generally unfeasible to resolve the hydrocarbon mixtures into individual components for quantification[3]. The current method of choice for analysis of hydrocarbons is the application of an online coupled liquid chromatography-gas chromatography with flame ionization detection (LC-GC-FID), which leads to two fractions quantified as sum parameters, MOSH and MOAH4. It is crucial to stress that the acronyms MOSH and MOAH have to be carefully interpreted depending on the applied method, e.g. online or offline hyphenated LC-GC-FID or nuclear magnetic resonance (NMR), as described in this paper
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.