Abstract

Stress (σ)-strain rate (\(\dot \varepsilon \)) data of banded and elongated grain microstructures of the Pb-Sn eutectic alloy were analysed over 298 to 443 K to evaluate microstructural instability during differential strain rate tests in the superplastic region. With reference to a stable equiaxed microstructure exhibiting uniqueσ-\(\dot \varepsilon \) relation, banded structure is more susceptible to strain hardening while the elongated grain microstructure exhibits either strain softening or strain hardening depending on the test temperature. This flow behaviour is considered in terms of a change in grain size, represented by the cube root of the grain volume. Activation energy for grain growth calculated from the differential strain rate test data indicates that the activation energy depends on strain rate and type of microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.