Abstract

Microscopic structural randomness in SiO2, a typical electrical insulating material, was evaluated by observing the decay profile of the photoluminescence due to oxygen vacancies (≡Si-Si≡). As samples with different degrees of randomness, an ion-implanted thermal SiO2 film, SiO2 films formed by plasma-enhanced chemical vapor deposition of tetraethoxysilane with and without doped fluorine, a buried oxide film prepared by SIMOX (separation by ion-implanted oxygen), and a bulk silica glass prepared by the soot-remelting method were tested. By analyzing the decay profile with a stretched exponential function, it was found that the deviation of the decay profile from a single exponential function is larger in the samples whose infrared absorption properties and HF etch rate suggest greater structural randomness. © 1997 Scripta Technica, Inc. Electr Eng Jpn, 119 (3): 1–6, 1997

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.