Abstract

BackgroundEarly diagnosis of tuberculosis (TB) and multidrug resistant tuberculosis (MDR TB) is important for the elimination of TB. We evaluated the microscopic observation drug susceptibility (MODS) assay as a direct rapid drug susceptibility testing (DST) method for MDR-TB screening in sputum samplesMethodsAll adult TB suspects, who were newly presenting to Pham Ngoc Thach Hospital from August to November 2008 were enrolled into the study. Processed sputum samples were used for DST by MODS (DST-MODS) (Rifampicin (RIF) 1 μg/ml and Isoniazid (INH) 0.4 μg/ml), MGIT culture (Mycobacterial Growth Indicator Tube) and Lowenstein Jensen (LJ) culture. Cultures positive by either MGIT or LJ were used for proportional DST (DST-LJ) (RIF 40 μg/ml and INH 0.2 μg/ml). DST profiles on MODS and LJ were compared. Discrepant results were resolved by multiplex allele specific PCR (MAS-PCR).ResultsSeven hundred and nine TB suspects/samples were enrolled into the study, of which 300 samples with DST profiles available from both MODS and DST-LJ were analyzed. Cording in MODS was unable to correctly identify 3 Mycobacteria Other Than Tuberculosis (MOTT) isolates, resulting in 3 false positive TB diagnoses. None of these isolates were identified as MDR-TB by MODS. The sensitivity and specificity of MODS were 72.6% (95%CI: 59.8, 83.1) and 97.9% (95%CI: 95.2, 99.3), respectively for detection of INH resistant isolates, 72.7% (95%CI: 30.9, 93.7) and 99.7% (95%CI: 98.1, 99.9), respectively for detecting RIF resistant isolates and 77.8% (95%CI: 39.9, 97.1) and 99.7% (95%CI: 98.1, 99.9), respectively for detecting MDR isolates. The positive and negative predictive values (PPV and NPV) of DST-MODS were 87.5% (95%CI: 47.3, 99.6) and 99.3% (95%CI: 97.5, 99.9) for detection of MDR isolates; and the agreement between MODS and DST-LJ was 99.0% (kappa: 0.8, P < 0.001) for MDR diagnosis. The low sensitivity of MODS for drug resistance detection was probably due to low bacterial load samples and the high INH concentration (0.4 μg/ml). The low PPV of DST-MODS may be due to the low MDR-TB rate in the study population (3.8%). The turnaround time of DST-MODS was 9 days and 53 days for DST-LJ.ConclusionThe DST-MODS technique is rapid with low contamination rates. However, the sensitivity of DST-MODS for detection of INH and RIF resistance in this study was lower than reported from other settings.

Highlights

  • Diagnosis of tuberculosis (TB) and multidrug resistant tuberculosis (MDR TB) is important for the elimination of TB

  • multidrug-resistant tuberculosis (MDR-TB) is caused by Mycobacterium tuberculosis (M. tuberculosis) which is resistant to at least the two most powerful TB drugs isoniazid (INH) and rifampicin (RIF)

  • Enrollment All patients suspected of tuberculosis, who were newly presenting to the Out Patient Department (OPD) at Pham Ngoc Thach Hospital from August to November 2008 were enrolled into the study

Read more

Summary

Introduction

Diagnosis of tuberculosis (TB) and multidrug resistant tuberculosis (MDR TB) is important for the elimination of TB. The worldwide occurrence of multidrug-resistant tuberculosis (MDR-TB) has been documented by the World Health Organization (WHO), with estimates of nearly half a million cases annually, and 150,000 deaths [1]. MDR-TB is caused by Mycobacterium tuberculosis (M. tuberculosis) which is resistant to at least the two most powerful TB drugs isoniazid (INH) and rifampicin (RIF). Major initiatives are under way to scale-up capacity for both M. tuberculosis culture and drug susceptibility testing (DST) [2]. Of 572 laboratories performing drug susceptibility testing (DST), only half participated in external quality assurance [1]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call