Abstract

Microplastic (MP) pollution in the aquatic environment is widespread, with a significant fraction of these particles originating from municipal wastewater treatment plant (WWTP) effluents. Whereas membrane filtration processes are touted as an effective MP removal strategy, the rejection of irregularly-shaped plastic particles, similar to those found in WWTPs, is poorly understood. Here, we characterize the filtration of irregularly-shaped MP particles (∼10 μm) through Durapore® microfiltration membranes (0.45 and 5 μm pore sizes). These particles were produced via ball-milling/sieving processes from a fluorescent polyethylene feedstock, enabling particle concentrations to be quantified using a standard fluorometric plate reader. Permeate samples from the 0.45 μm membrane exhibited low fluorescent intensities relative to feed samples, implying minimal MP transmission. Conversely, appreciable MP transmission through the 5 μm membrane was noted, with sizable MPs (∼2–7 μm) found in the permeate. This transmission was exacerbated at higher fluxes which emphasizes how operating conditions can govern MP retention. Post-filtration analyses demonstrated that particle capture occurred largely at the feed-membrane interface, where greater MP intrusion into the membrane was seen at the larger pore size. These results reaffirm the importance of choosing an appropriate membrane/membrane pore size and operating conditions to maximize MP retention in WWTPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.