Abstract
Excessive agricultural intensification adversely affects soil quality, particularly in hilly terrain, leading to increased erosion. Anthropogenic denudation, intensified by tillage erosion, results in the displacement of soil material from hilltops and shoulders to their bases. The research hypothesis posits that tillage erosion adversely affects the microbiological and chemical properties of soils, especially at the hilltops of intensively cultivated areas. The study aimed to assess the microbiological and chemical properties of Luvisols cultivated under conventional plowing in the moraine region of the Southern Krajna Lakeland, Poland. The evaluation focused on the results of soil sample analyses taken from the hilltops and foothills of eroded mounds. Microbiological investigations included determining the abundance of actinomycetes, filamentous fungi, heterotrophic bacteria, cellulolytic microorganisms, copiotrophs, and oligotrophs. Additionally, pH values and the contents of phosphorus, potassium, magnesium, total organic carbon, and nitrogen were determined. A higher abundance of bacteria, actinomycetes, and copiotrophs was observed at the foothills. Statistically significant differences due to slope effects were noted for all chemical parameters, with higher concentrations of organic carbon, nitrogen, potassium, and phosphorus found in the foothill areas. Understanding denudation processes can contribute to sustainable soil resource use and agrocenosis conservation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.