Abstract

One of the greatest challenges toward rechargeable magnesium batteries is the development of noncorrosive electrolyte solutions with high anodic stability that can support reversible Mg deposition/dissolution. In the last few years, magnesium electrolyte solutions based on Cl-free fluorinated alkoxyborates were investigated for Mg batteries due to their high anodic stability and ionic conductivity and the possibility of reversible deposition/dissolution in ethereal solvents. Here, the electrochemical performance of Mg[B(hexafluoroisopropanol)4]2/dimethoxyethane (Mg[B(HFIP)4]2/DME) solutions was examined. These electrolyte solutions require a special "conditioning" pretreatment that removes undesirable active moieties. Such a process was developed and explored, and basic scientific issues related to the mechanism by which it affects Mg deposition/dissolution were addressed. The chemical changes that occur during the conditioning process were examined. Mg[B(HFIP)4]2/DME solutions were found to enable reversible Mg deposition, albeit with a relatively low Coulombic efficiency of 95% during the first cycles. Prolonged deposition/dissolution cycling tests demonstrate a stable behavior of magnesium electrodes. Overall, this system presents a reasonable electrolyte solution and can serve as a basis for future efforts to develop chlorine-free alternatives for secondary magnesium batteries. It is clear that such a conditioning process is mandatory, as it removes reactive contaminants that lead to unavoidable passivation and deactivation of Mg electrodes from the solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.