Abstract

The feasibility of using a microdialysis technique to obtain pharmacokinetic data on tissue exposure to methotrexate (MTX) was investigated. Microdialysis probes were implanted in the jugular vein, femoral muscle, and liver of anesthetized male Wistar rats. MTX (100 mg/kg) was given as a bolus injection through an indwelling venous catheter, and blood samples were obtained through a second venous access and by microdialysis for a total of 6 h. Heparinized plasma, ultrafiltered plasma, and microdialysis effluent from tissue and venous probes were analyzed by high-performance liquid chromatography. Centrifugal ultrafiltration of rat plasma spiked in vitro with MTX (1-100 microM) revealed a mean binding to plasma proteins of 21%. In vitro microdialysis of this spiked plasma resulted in 23% relative recovery of the unbound fraction. In rats receiving MTX, plasma protein binding was 23% and the relative drug recovery as assessed with venous microdialysis probes was 18%. Plotting of unbound (i.e., ultrafiltrate) MTX concentrations in the blood against venous microdialysis perfusate values in the blood gave a good linear correlation with a coefficient of correlation (r2) of 0.98. There was also a linear correlation between the total MTX concentrations in venous blood and the drug levels in microdialysis samples from muscle and liver (r2 = 0.93 and 0.74, respectively). Area under the curve estimations were consistent with an MTX exposure of 30% and 46% for the muscle and liver as compared with the circulation. The present study demonstrates that the microdialysis technique can provide reproducible data on tissue exposure to MTX in an animal model and indicates that the methodology is adaptable to clinical settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call