Abstract

A combined lung and ventilator model was built, validated and used to test commercial systems for indirect calorimetry. It simulates O2 uptake and CO2 excretion under ventilator treatment conditions. In the model inspiratory gases are diluted with N2 and CO2 to give the desired expiratory concentrations. Minute volume, FIO2, ventilatory pressure, VO2, VCO2 and consequently RQ can be altered to simulate the adult clinical situation. A selected respiratory pattern is maintained by the lung model. Equipment for indirect calorimetry can then be connected to it and the results compared. Reference values are derived from measurements with a mass spectrometer and a Godart spirometer. Three commercially available instruments (Beckman MMC, Horizon MMC and Engström MC) were evaluated with this system. The limits of agreement with the reference values under different conditions (FIO2 0.4-0.7, ventilatory pressure 0-50 cmH2O) were determined. Differences as high as 15% from the true values of VO2 and V CO2 were observed. The pattern of mechanical ventilation and the intrinsic properties of the analyzers in the equipment used for indirect calorimetry influence measurements to a significant extent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.