Abstract

The recent achievements in a number of laboratories of critical currents in excess of 1.0x10{sup 6} amp/cm{sup 2} at 77K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential applications of coated conductors at high temperatures and high magnetic fields. As of today, two different approaches for obtaining the textured substrates have been identified. These are: Los Alamos National Laboratory`s (LANL) ion-beam assisted deposition called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory`s (ORNL) rolling assisted, bi-axial texturized substrate option called RABiTS. Similarly, based on the published literature, the available options to form High Temperature Superconductor (HTS) films on metallic, semi-metallic or ceramic substrates can be divided into: physical methods, and non-physical or chemical methods. Under these two major groups, the schemes being proposed consist of: - Sputtering - Electron-Beam Evaporation - Flash Evaporation - Molecular Beam Epitaxy - Laser Ablation - Electrophoresis - Chemical Vapor Deposition (Including Metal-Organic Chemical Vapor Deposition) - Sol-Gel - Metal-Organic Decomposition - Electrodeposition, and - Aerosol/Spray Pyrolysis. In general, a spool- to-spool or reel-to-reel type of continuous manufacturing scheme developed out of any of the above techniques, would consist of: - Preparation of Substrate Material - Preparation and Application of the Buffer Layer(s) - Preparation and Application of the HTS Material and Required Post-Annealing, and - Preparation and Application of the External Protective Layer. These operations would be affected by various process parameters which can be classified into: Chemistry and Material Related Parameters; and Engineering and Environmental Based Parameters. Thus, one can see that for successful development of the coated conductors manufacturing process, an extensive review of the available options was necessary. Under the U.S. Department of Energy (DOE`s) sponsorship, the University of Tennessee Space Institute (UTSI), was given a responsibility of performing this review. In UTSI`s efforts to review the available options, Oak Ridge National Laboratory, (ORNL), especially Mr. Robert Hawsey and Dr. M. Paranthaman provided very valuable guidance and technical assistance. This report describes the review carried out by the UTSI staff, students and faculty members. It also provides the approach being used to develop the cost information as well as the major operational parameters/variables that will have to be monitored and the relevant control systems. In particular, the report includes: - Process Flow Schemes and Involved Operations - Multi-Attribute Analysis Carried out for Objective and Subjective Criteria - Manufacturing Parameters to Process 6,000 km/year of Quality Coated Conductor Material - Metal Organics (MOD), Sol-Gel, and E-Beam as the Leading Candidates, and Technical Concerns/Issues that Need to be Resolved to Develop a Commercially Viable Option Out of Each of Them. - Process Control Needs for Various Schemes - Approach/Methodology for Developing Cost of Coated Conductors This report also includes generic areas in which additional research and development work are needed. In general, it is our feeling that the science and chemistry that are being developed in the coated conductor wire program now need proper engineering assistance/viewpoints to develop leading options into a viable commercial process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call