Abstract

ABSTRACT About 9 wt.% Cr steels are widely used in the design and fabrication of thick section components in combined cycle or coal-fired applications for working temperatures of 600 ~ 650°C. This family of materials possesses a martensitic microstructure stabilised by precipitates. The presence of nitrides, inclusions or evolution of second-phase particles may increase the metallurgical risk to creep. The chemical composition and microstructural evolution of 9 wt.% Cr steels contribute to thermal stability and long-term performance. In some specialist alloys, Ta is added to the composition which causes the formation of fine MX precipitates which are only present at the nanometre scale in tempered martensite, which hinders the recovery of dislocations and the migration of laths to extend creep life. However, the presence of large Ta-containing particles or inclusions in the 9 wt.% Cr steels may have a detrimental effect on its creep performance, as they may act as preferred sites for cavity nucleation. To fully appreciate the development of damage in these steels, it is necessary to link the pre- and post-test conditions, evaluate damage in the parent metal, develop procedures that provide consistency of results, and obtain statistically relevant data. The evolution of the Ta-containing phase has been tracked and quantified using a variety of correlative characterisation approaches. Utilising focused ion beam microscopy and two-dimensional electron-based microscopic characterisation, three-dimensional tomography has identified a strong relationship between creep cavities and Ta-containing phases from the early stages of creep.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call