Abstract
A faster, more cost-effective, and higher-quality data acquisition for natural background-level metals and radionuclides in soils is needed for remedial investigations of contaminated sites. The advantages and disadvantages of neutron activation analysis (NAA) compared with those of acid-digestion-based spectrometry (ADS) methods were evaluated using Al, Sb, As, Cr, Co, Fe, Mg, Mn, Hg, K, Ag,232Th,235U,238U, V, and Zn data. The ADS methods used for this project were inductively coupled plasma (ICP), ICP-mass spectrometry (ICP-MS), and alpha spectrometry. Scatter plots showed that the NAA results for As, Co, Fe, Mn,232Th, and238U are reasonably correlated with the results from the other analytical methods. Compared to NAA, however, the ADS methods underestimated Al, Cr, Mg, K, V, and Zn. Because of the high detection limits of ADS methods, the scatter plots of Sb, Hg, and Ag did not show a definite relationship. The NAA results were highly correlated with the alpha spectrometry results for232Th and238U but poorly correlated for235U. The NAA, including the delayed neutron counting, was a far superior technique for quantifying background levels of radionuclides (232Th,235U, and238U) and metals (Al, Cr, Mg, K, V, and Zn) in soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.