Abstract

In this work, the mesophilic bacterium Burkholderia sacchari, the halophilic bacterium Halomonas halophila, and the thermophilic bacterium Schlegelella thermodepolymerans were evaluated with regards to their suitability for polyhydroxyalkanoates (PHA) production from model media mimicking lignocellulose hydrolysates. B. sacchari was capable of utilizing all the tested “model hydrolysates”, yielding comparable PHA titers and turning out as very robust against lignocellulose-derived microbial inhibitors. On the contrary, H. halophila reached substantially higher PHA titers on hexoses-rich media, while S. thermodepolymerans preferred media rich in pentoses. Both extremophiles were more sensitive to microbial inhibitors than B. sacchari. Nevertheless, considering substantially higher PHA productivity of both extremophiles even in the presence of microbial inhibitors and also other positive factors associated with utilization of extremophiles, such as the reduced risk of microbial contamination, both H. halophila and S. thermodepolymerans are auspicious candidates for sustainable PHA production from abundantly available, inexpensive lignocelluloses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.