Abstract

Mercury pollution in fields has become a potential threat to human health. Planting wheat cultivars with low mercury accumulation in slight or medium mercury-polluted fields is an efficient solution to ensure food safety. Therefore, this study evaluated the mercury resistance and accumulation characteristics of 30 generalized wheat cultivars in major wheat-producing areas of China. A modified membership function that considers the weight of each trait was used.Results demonstrated that the plant height of wheat significantly increased under both low mercury and high mercury stresses. The uppermost internode length significantly increased while the spikelet number significantly decreased under low mercury stress. Yield-related traits, including total grain number, fresh grain yield, and dry grain yield, significantly decreased under high mercury stress. The mercury concentrations in wheat grains presented a significant negative correlation with the mercury resistance coefficients of plant height (−0.38*), spike length (−0.39*), and fresh grain yield (−0.38*) under high mercury stress. The heritability of all traits reached medium to high levels, ranging from 0.31 to 0.68. This finding suggested that the investigated traits are stable and suitable for the assessment system. Selection criteria for wheat mercury resistance were established using discriminant analysis, which integrated the mercury resistance coefficients of effective tiller number, fresh grain yield, and dry biomass into the discriminant function under low mercury stress and the mercury resistance coefficients of dry grain yield and dry biomass under high mercury stress. Ultimately, Liangxing-99, Nongda-3163, and Gaocheng-8901 were screened for high mercury resistance and low mercury accumulation. These wheat cultivars could be planted in fields with low or medium mercury pollution to obtain safe grains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.