Abstract

Despite extensive research for more than six decades on medical countermeasures against poisoning by organophosphorus compounds (OP) the treatment options are meagre. The presently established acetylcholinesterase (AChE) reactivators (oximes), e.g. obidoxime and pralidoxime, are insufficient against a number of nerve agents and there is ongoing debate on the benefit of oxime treatment in human OP pesticide poisoning. Up to now, the therapeutic efficacy of oximes was mostly evaluated in animal models but substantial species differences prevent direct extrapolation of animal data to humans. Hence, it was considered essential to establish relevant experimental in vitro models for the investigation of oximes as antidotes and to develop computer models for the simulation of oxime efficacy in different scenarios of OP poisoning. Kinetic studies on the various interactions between erythrocyte AChE from various species, structurally different OP and different oximes provided a basis for the initial assessment of the ability of oximes to reactivate inhibited AChE. In the present study, in vitro enzyme-kinetic and pharmacokinetic data from a minipig model of dimethoate poisoning and oxime treatment were used to calculate dynamic changes of AChE activities. It could be shown that there is a close agreement between calculated and in vivo AChE activities. Moreover, computer simulations provided insight into the potential and limitations of oxime treatment. In the end, such data may be a versatile tool for the ongoing discussion of the pros and cons of oxime treatment in human OP pesticide poisoning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.