Abstract

ABSTRACT The mechanical strength and durability of eco-friendly mortars used in the repair of marine concrete structures exposed to freshwater and seawater environments were evaluated in this paper. The eco-friendly mortar samples were produced using various ratios of fly ash (FA), ground granulated blast-furnace slag (GGBFS), and silica fume (SF) as cementitious materials. Seven mixtures of eco-friendly mortars, including a control mixture; three mixtures with respective substitutions of GGBFS for Portland cement of 10, 20, and 30% by cement mass; and three mixtures with respective additions of SF of 5, 10, and 15% by total binder mass, were used to produce the samples. Tests, including compressive strength, flexural strength, ultrasonic pulse velocity (UPV), electrical surface resistivity (ESR), rapid chloride ion penetration (RCP), thermal conductivity (TC), and microstructure analysis, were conducted to determine the mechanical strength and durability values of the samples. The experimental results show that replacing Portland cement with GGBFS negatively affected the properties of the mortars by reducing the mechanical strength, UPV, ESR, and TC while increasing the RCP in the samples. Also, adding an appropriate amount of SF could improve the mechanical strength and durability characteristics of the eco-friendly mortars. As a result, the mortar sample containing 30% GGBFS and 10% SF earned compressive and flexural strength values of approximately 49.2 and 13.8 MPa, respectively, at 56 days of curing age. Mortar samples with UPV values >3660 m/s were identified as “high quality”. The corrosion resistance of all of the samples was found to be high, particularly in chloride-contaminated environments, due to relatively low (1000 - 2000 Coulombs) RCP values. The best overall performance was recorded for the sample containing 30% GGBFS and 10% SF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.