Abstract

Characterization of mechanical properties of thin porous films with nanoscale resolution remains a challenge for instrumentation science. In this work, atomic force microscopy (AFM) in the PeakForce quantitative nanomechanical mapping (PFQNM) mode is used for Young's modulus measurements of porous organosilicate glass films. The test samples were prepared by sol-gel techniques using silicon alkoxide and methyl-modified silicon alkoxide to prepare films with different CH3/Si ratios. The film porosity was engineered by using a Brij 30 template and the evaporation-induced self-assembly technique. The chemical composition, pore structure, and modification during air storage and thermal annealing were studied using FTIR spectroscopy and ellipsometric porosimetry (EP). Since PFQNM AFM was first used for evaluation of Young's modulus of thin porous films, the obtained results are benchmarked using nanoindentation (NI), surface acoustic wave (SAW) spectroscopy, and EP. The results have good agreement with each other, but PFQNM and NI give slightly larger values than SAW and EP. The difference is in agreement with previously reported data and reflects the different physical meaning of the obtained values. It is shown that the presence of physically adsorbed water strongly influences the results generated by PFQNM AFM, and therefore, reliable water removal from the studied materials is necessary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.