Abstract
Since its introduction in pipe applications more than 40 years ago, polyethylene (PE) has been taking a growing place in gas and water distribution due to its low cost, lightness and good corrosion resistance. Besides, long-term properties have been steadily rising due to the development of novel PE-based materials. The present highest standard is the PE100 class. Several laboratory tests are used to extract design data for long-term failure-type prediction based on stress and time to failure relationship. It remains difficult to assess the relation between creep and fatigue loadings on the one side. On the other side, the manufacturing process of the test specimens influences considerably the obtained performance for viscoelastic materials subjected to working conditions. In present paper, the mechanical properties of high-density polyethylene (HDPE), PE 100 class, for pipes were investigated using experimental techniques. Thermographic technique was used during the static tests in order to identify the maximum stress zone and also during the fatigue tests to study the temperature evolution of the specimen. The aim of this study is the application of the Thermographic Method for the fatigue assessment of PE100.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.