Abstract

Nanoparticles have advantageous small-size and surface effects that impart them with unique mechanical properties. To evaluate these properties, a constant-volume shear tester that can precisely measure stresses on the shear plane was used. Six samples, namely, hydrophilic and hydrophobic silica, alumina, and titania nanoparticles, were prepared for the shear tests. For each sample, a single shear test provided the void fraction, stress relaxation ratio, stress transmission ratio, powder yield locus, consolidation yield locus, critical state line, shear cohesion, and flow function. All the tests were conducted under ambient conditions using powder beds, in which the void fractions were in the range of 0.89–0.96. A series of analyses demonstrated that the hydrophilic nanoparticles have lower flowability than the hydrophobic nanoparticles, indicating that moisture on the surface increases the cohesion and inhibits the flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.