Abstract

The mechanical properties of ceramic matrix composites (CMC) depend on the individual properties of fibers and matrix, the fiber-matrix interface, the microstructure and the orientation of the fibers. The fiber-matrix interface of ceramics with stiff matrices (e.g. CVI-derived SiC/SiC) must be weak enough to allow crack deflection and debonding in order to achieve excellent strength and strain to failure (weak interface composites WIC). This micromechanical behavior has been intensively investigated during the last 20 years. With the development of CMC with weak matrices (weak matrix composites WMC) as e.g. oxide/oxide composites or polymer derived CMC the mechanical response can not be explained anymore by these models as other microstructural mechanisms occur. If the fibers are oriented in loading direction in a tensile test the WMC behave almost linear elastic up to failure and show a high strength. Under shear mode or if the fibers are oriented off axis a significant quasiplastic stress-strain behavior occurs with high strain to failure and low strength. This complex mechanical behavior of WMC will be explained using a finite element (FE) approach. The micromechanical as well as the FE models will be validated and attributed to the different manufacturing routes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.