Abstract

Abstract The mass transfer coefficient (K L ) determined using an electrochemical technique was used in this work as a parameter to evaluate the hydrodynamics of hollow fiber membrane modules. A new microfiltration module configuration was investigated, taking advantage of the hydrocyclone concept aimed at reducing the concentration of the polarization layer near the membrane surface promoted by the centrifugal field. The mass transfer coefficient for the new configuration was compared with that of a conventional longitudinal module. The experimental determination of K L was obtained by monitoring the electrochemical reactions that occur at the electrode surface under mass transfer-limiting conditions. The performance of the microfiltration modules, both hybrid and longitudinal, was evaluated based on parameters such as packing density and fluid flow regimes. The results achieved for the mass transfer coefficient with the electrochemical technique allowed for performance evaluations of the proposed new module configuration and a comparison with the longitudinal module.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.