Abstract

The purpose of this study was to evaluate mandibular asymmetry in youngsters with posterior unilateral crossbite (PUXB), through cone-beam computed tomography and reverse engineering technique, before and after rapid maxillary expansion (RME) treatment. Forty cone-beam computed tomography (CBCT) images were obtained from all patients at two time points, namely T0 acquired before the placement of a Hyrax expander and T1 after appliance removal. The CBCT scans were segmented and volume rendered into a surface there-dimensional (3D) mesh model. Thereafter, mandibular models were digitally registered by using a "best-fit" algorithm. Surface and volumetric changes, between T0 and T1, were compared by using Student's t tests. A slight increase of 0.45 cm3 of the total mandibular volume was found at T1 when compared with T0 (p < 0.001). The mandibular hemi-volume on the crossbite side (CB) was slightly smaller than the non-crossbite side both at T0 and T1. However, the mean differences of hemi-volume from the CB (crossbite) and non-CB side between T0 and T1 show a decrease of 0.26 cm3 (p < 0.001). Findings for the surface-to-surface deviation analysis demonstrated a fine percentage of matching at T0 which slightly improved at T1 (p < 0.001). Youngsters affected by PUXB showed a very slight and not statistically significant volumetric and morphological asymmetry between CB side and non-CB side at T0. However, the change in mean differences of 0.26 cm cannot be considered clinically relevant. Mandibles in young PUXB patients exhibit only a very mild mandibular asymmetry. Although the statistically significant mean change found right after RME removal cannot be considered clinically relevant, a more consistent sample and a longer follow-up could be of interest in explaining the short-term findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call