Abstract

Palmitate oxidation by liver mitochondria from fed and starved rats exhibited markedly different sensitivities to inhibition by malonyl-CoA. In the mitochondrial system from fed rats, 50% inhibition required 19 muM-malonyl-CoA, whereas the mitochondria from starved rats were by comparison refractory to malonyl-CoA. Inhibition by malonyl-CoA was completely reversed by increasing the molar ratio of fatty acid to albumin. Results indicate that the potential effectiveness of malonyl-CoA as an inhibitor of fatty acid oxidation in the liver is dependent on an unidentified regulatory component of the system. The functional activity of this component is modified by the nutritional state, and its site of action is at the mitochondrial level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.