Abstract

In engineering applications, analysis of crack growth life is useful in situations where an unexpected crack has been found in a component of a machine, vehicle, or structure. The objective of this research is to investigate the correlation curve of magnetic flux leakage, Hp(y) signals by evaluating their critical value point with respect to step size. Moreover, the relation of fatigue crack growth rate, da/dN toward the stress intensity range, ΔK and Hp(y) in metal components is also discussed in this paper. The tension-tension fatigue test was conducted with the metal magnetic memory scanning device and crack opening displacement (COD) gauges in 10 Hz (testing frequency) by applying a load for 3.0-5.0 kN respectively. As a result, the correlation curve of Hp(y) was built with the R-Squared values in the range of 0.99 and one mathematical model has been developed for estimation analysis. The sigmoidal shape curve was plotted on the graph of da/dN versus ΔK and also with Hp(y). Thus, for validation, the linear relation is represented between ΔK and Hp(y) that present a good approach for magnetic parameter to be developed in the fatigue crack growth analysis. Therefore, the magnetic method has greater capability to analyze the fatigue crack propagation life in a real application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call