Abstract

The sulfated polysaccharides from Solieria filiformis (Sf), Botryocladia occidentalis (Bo), Caulerpa racemosa (Cr) and Gracilaria caudata (Gc) were extracted and extensively purified. These compounds were then subjected to in vitro assays to evaluate the inhibition of these polysaccharides on the growth of Leishmania (L.) amazonensis promastigotes. Under the same assay conditions, only three of the four sulfated polysaccharides were active against L. amazonensis, and the polysaccharide purified from Cr was the most potent (EC50 value: 34.5 μg/mL). The polysaccharides derived from Bo and Sf demonstrated moderate anti-leishmanial activity (EC50 values of 63.7 μg/mL and 137.4 μg/mL). In addition, we also performed in vitro cytotoxic assays toward peritoneal macrophages and J774 macrophages. For the in vitro cytotoxicity assay employing J774 cells, all of the sulfated polysaccharides decreased cell survival, with CC50 values of 27.3 μg/mL, 49.3 μg/mL, 73.2 μg/mL, and 99.8 μg/mL for Bo, Cr, Gc, and Sf, respectively. However, none of the sulfated polysaccharides reduced the cell growth rate of the peritoneal macrophages. These results suggest that macroalgae contain compounds with various chemical properties that can control specific pathogens. According to our results, the assayed sulfated polysaccharides were able to modulate the growth rate and cell survival of Leishmania (L.) amazonensis promastigotes in in vitro assays, and these effects involved the interaction of the sulfated polysaccharides on the cell membrane of the parasites.

Highlights

  • The surface of protozoan parasites, such as those belonging to the parasite genus Leishmania, is responsible for regulating interactions with the extracellular environment and is involved in the absorption of nutrients and signaling pathways

  • The sulfated polysaccharides used in this study were extensively purified from the crude extracts of Solieria filiformis (Sf), Botryocladia occidentalis (Bo), Caulerpa racemosa (Cr) and Gracilaria caudate (Gc) by Diethylamionoethyl (DEAE) ion exchange chromatography

  • The molecular mass of Gracilaria caudata (Gc), Sf, Bo and Cr were estimated to be greater than 200 kDa, 30 kDa and 25 kDa, respectively, according to the molecular mass markers: blue dextran (2000 kDa); β-amylase (225 kDa); and bovine serum albumin (BSA, Sigma, 66 kDa), which forms a natural dimer of 120 kDa; ovalbumin (OVA, 43 kDa); carbonic anhydrase (CA, 29 kDa); and ribonuclease (RA, 14 kDa)

Read more

Summary

Introduction

The surface of protozoan parasites, such as those belonging to the parasite genus Leishmania, is responsible for regulating interactions with the extracellular environment and is involved in the absorption of nutrients and signaling pathways. According to Azevedo-Pereira et al [1], there is evidence that heparin-binding proteins (HBPs) present on the surface of Leishmania spp. may play important roles in the life cycle of parasites and in defining the success of parasite attachment to and invasion of tissues of the mammalian and invertebrate hosts. There is evidence that the HBPs present on the surface of Leishmania spp. can play an important role in the life cycle of parasites, defining the success of parasite binding and invasion of the host tissues of mammals and invertebrates. Marine macroalgae have high concentrations of sulfated polysaccharides (SP), heterogeneous and complex macromolecules with significant importance to the physiology of algae These compounds have been explored in the biomedical field, indicating the therapeutic potential of sulfated polysaccharides [4]. We evaluated the effects of four highly purified sulfated polysaccharides from Solieria filiformis (Sf), Botryocladia occidentalis (Bo), Caulerpa racemosa (Cr) and Gracilaria caudate (Gc) on the growth of Leishmania (L.) amazonensis promastigote, as well as their cytotoxic effects

Results and Discussion
Specimen Collection
Fractionation of the SP from Algae
Determination of Anti-Leishmanial Activity
Macrophage Cytotoxicity
Selectivity Index Determination
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.