Abstract
Modeling preferential flow has been a concern of many academic fields in the past 30 years all over the world and helps to prevent groundwater contamination. A dual-porosity model, MACRO, was evaluated for short-term (less than 2 days) simulation of water flow and non-reactive solute (chloride) transport through the profile of six plots in well-structured Maury silt loam soil. Water flow in micropores is calculated by the Richards’ equation while simple gravity flow is assumed in the macropores. Solute transport in the micropores is calculated by the convection-dispersion equation (CDE) while the dispersion and diffusion in the CDE is neglected for the solute transport in the macropores. The applied water and chloride reached the bottom of the profile during the 2 and 1-hour(s) application periods in studies 2 and 3, respectively. There is a strong indication of macropore flow in this soil. Based on the statistical criteria, the model accurately simulated water flow and solute transport with depth and time in all plots. The mean values of three statistical parameters (coefficient of residual mass, model efficiency, and correlation coefficient) for water and chloride transport were –0.0014, 0.791, 0.903 and 0.0333, 0.923, 0.956, respectively. Preliminary studies showed that the model could not simulate flow and transport well enough with the one-domain flow concept. In the two-domain flow, effective diffusion path-length, boundary hydraulic conductivity, and boundary soil water pressure were the three most important parameters that control flow and transport between the two domains. The effective diffusion path-length represented the structural development with depth in the Maury silt loam soil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.