Abstract
Oil spill incidents can significantly impact marine ecosystems in Arctic/subarctic areas. Low biodegradation rate, harsh environments, remoteness, and lack of sufficient response infrastructure make those cold waters more susceptible to the impacts of oil spills. A major challenge in Arctic/subarctic areas is to timely select suitable oil spill response methods (OSRMs), concerning the process complexity and insufficient data for decision analysis. In this study, we used various regression-based machine learning techniques, including artificial neural networks (ANNs), Gaussian process regression (GPR), and support vector regression, to develop decision-support models for OSRM selection. Using a small hypothetical oil spill dataset, the modelling performance was thoroughly compared to find techniques working well under data constraints. The regression-based machine learning models were also compared with integrated and optimized fuzzy decision trees models (OFDTs) previously developed by the authors. OFDTs and GPR outperformed other techniques considering prediction power (> 30 % accuracy enhancement). Also, the use of the Bayesian regularization algorithm enhanced the performance of ANNs by reducing their sensitivity to the size of the training dataset (e.g., 29 % accuracy enhancement compared to an unregularized ANN).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.