Abstract
The integration of renewable energy resources into smart grids has become increasingly important to address the challenges of managing and forecasting energy production in the fourth energy revolution. To this end, artificial intelligence (AI) has emerged as a powerful tool for improving energy production control and management. This study investigates the application of machine learning techniques, specifically ARIMA (auto-regressive integrated moving average) and Bi-LSTM (bidirectional long short-term memory) models, for predicting solar power production for the next year. Using one year of real-time solar power production data, this study trains and tests these models on performance measures such as mean absolute error (MAE) and root mean squared error (RMSE). The results demonstrate that the Bi-LSTM (bidirectional long short-term memory) model outperforms the ARIMA (auto-regressive integrated moving average) model in terms of accuracy and is able to successfully identify intricate patterns and long-term relationships in the real-time-series data. The findings suggest that machine learning techniques can optimize the integration of renewable energy resources into smart grids, leading to more efficient and sustainable power systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.