Abstract

ABSTRACT Several machine learning regression models have been advanced for the estimation of crop biophysical parameters with optical satellite imagery. However, literature on the comparative performances of such models is still limited in range and scope, especially under multiple data sources, despite the potential of multi-source imagery to improving crop monitoring in cloudy areas. To fill in this knowledge gap, this study explored the synergistic use of Landsat-8, Sentinel-2A, China’s environment and disaster monitoring and forecasting satellites (HJ-1 A and B) and Gaofen-1 (GF-1) data to evaluate four machine learning regression models that include Random Forest (RF), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), and Gradient Boosting Decision Tree (GBDT), for rice dry biomass estimation and mapping. Taking a major rice cultivation area in southeast China as case study during the 2016 and 2017 growing seasons, a cross-calibrated time series of the Enhanced Vegetation Index (EVI) was obtained from the quad-source optical imagery and on which the aforementioned models were applied, respectively. Results indicate that in the before rice heading scenario, the most accurate dry biomass estimates were obtained by the GBDT model (R2 of 0.82 and RMSE of 191.8 g/m2) followed by the RF model (R2 of 0.79 and RMSE of 197.8 g/m2). After heading, the k-NN model performed best (R2 of 0.43 and RMSE of 452.1 g/m2) followed by the RF model (R2 of 0.42 and RMSE of 464.7 g/m2). Whist the k-NN model performed least in the before heading scenario, SVM performed least in the after heading scenario. These findings may suggest that machine learning regression models based on an ensemble of decision trees (RF and GBDT) are more suitable for the estimation of rice dry biomass, at least with optical satellite imagery. Studies that would extend the evaluation of these machine learning models, to other parameters like leaf area index, and to microwave imagery, are hereby recommended.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.