Abstract

Road surface imperfections and aberrations generate shocks causing vehicles to sustain structural fatigue and functional defects, driver and passenger discomfort, injuries, and damage to freight. The harmful effect of shocks can be mitigated at different levels, for example, by improving road surfaces, vehicle suspension and protective packaging of freight. The efficiency of these methods partly depends on the identification and characterisation of the shocks. An assessment of four machine learning algorithms (Classifiers) that can be used to identify shocks produced on different roads and test tracks is presented in this paper. The algorithms were trained using synthetic signals. These were created from a model made from acceleration measurements on a test vehicle. The trained Classifiers were assessed on different measurement signals made on the same vehicle. The results show that the Support Vector Machine detection algorithm used in conjunction with a Gaussian Kernel Transform can accurately detect shocks generated on the test track with an area under the curve (AUC) of 0.89 and a Pseudo Energy Ratio Fall-Out (PERFO) of 8%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call