Abstract
District energy systems have the potential to achieve deep energy savings by leveraging the density and diversity of loads in urban districts. However, planning and adoption of district thermal energy systems is hindered by the analytical burden and high infrastructure costs. It is hypothesized that network topology optimization would enable wider adoption of advanced (ambient temperature) district thermal energy systems, resulting in energy savings. In this study, energy modeling is used to compare the energy performance of “conventional” and “advanced” district thermal energy systems at the urban district level, and a partial exhaustive search is used to evaluate a heuristic for the topology optimization problem. For the prototypical district considered, advanced district thermal energy systems mated with low-exergy building heating and cooling systems achieved a source energy use intensity that was 49% lower than that of conventional systems. The minimal spanning tree heuristic was demonstrated to be effective for the network topology optimization problem in the context of a prototypical district, and contributes to mitigating the problem’s computational complexity. The work presented in this paper demonstrates the potential of advanced district thermal energy systems to achieve deep energy savings, and advances to addressing barriers to their adoption through topology optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.