Abstract

Sensing techniques based on accelerometers for modal parameters identification are among the most studied and applied in Structural Health Monitoring of civil structures. The advent of low-cost MEMS accelerometers and open-source electronic platforms, such as Arduino, have facilitated the design of low-cost systems suitable for modal identification, although there is still a lack of studies regarding practical application and comparison of commercially available low-cost accelerometers under SHM conditions. This work presents an experimental performance evaluation of six low-cost MEMS accelerometers for the identification of natural frequencies and damping ratios of a three-storey frame model and a reinforced concrete slab, as well as their noise characteristics. A low-cost Arduino-based data acquisition system was used. The results showed an overall good performance of the MEMS accelerometers, with identified natural frequencies errors within 1.02% and 7.76% of reference values, for the three-storey frame and concrete slab, respectively, and a noise density as low as 108 g/√Hz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.