Abstract

Conserving water resources from scarcity and pollution is the basis of water resource management and water quality monitoring programs. However, due to industrialization and population growth in Malaysia, which have resulted in poor water quality in many areas, this program needs to be improved. A smart water quality monitoring system based on the internet of things (IoT) paradigm was designed to analyze water conditions in real time and enable effective water management. Long-range (LoRa) application of the low-power, wide-area networking concept has become a phenomenon in IoT smart monitoring applications. This study proposes the implementation of a LoRa network in a water quality monitoring system-based IoT approach. The LoRa nodes were embedded with measuring sensors pH, turbidity, temperature, total dissolved solids, and dissolved oxygen, in the designated water stations. They operate at a transmission power of 14 dB and a bandwidth of 125 kHz. The network properties were tested with two different antenna gains of 2.1 dBi and 3 dBi, with three different spread factors of 7, 9, and 12. The water stations were located on the Sungai Pantai and Sungai Anak Air Batu rivers on the Universiti Malaya campus, Malaysia. Following a dashboard display and K-means analysis of the water quality data received by the LoRa gateway, it was determined that both rivers are Class II B rivers. The results from the evaluation of LoRa performance on the received strength signal indicator, signal noise ratio, loss packet, and path loss at best were −83 dBm, 7 dB, <0%, and 64.41 dB, respectively, with a minimum received sensitivity of −129.1 dBm. LoRa has demonstrated its efficiency in an urban environment for smart river monitoring purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.