Abstract

The article presents a methodology for the theoretical assessment of the processes of loosening and compaction of the soil with a working tool based on pressure distribution patterns in the soil stratum obtained using the computational fluid dynamic model (CFD model). A computational fluid dynamics model is developed to assess the stress-strain state of the soil and soil particles' movement, implemented in the FlowVision computer program. As a model, the FlowVision Free Surface model is adopted, in which the Navier-Stokes equations, the transfer equations of turbulent functions, and the transfer equation for the filling function are solved. The implementation of this model made it possible to establish three-dimensional pressure distribution patterns, based on which zones of deformation, loosening, and compaction in the soil were determined in interaction with a vertical working tool. The implementation of this methodology will theoretically justify the geometric parameters of tillage tools and machines, taking into account the conditions for forming the required quality of tillage by loosening and compaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call