Abstract

High dietary α-tocopherol levels reportedly result in osteopenia in growing rats, whereas α-tocopherol deficiency in α-tocopherol transfer protein-knockout (α-TTP-KO) mice results in increased cancellous bone mass. Because osteoporosis is a disease associated primarily with aging, we hypothesized that age-related bone loss would be attenuated in α-TTP-KO mice. Cancellous and cortical bone mass and microarchitecture were assessed using dual-energy X-ray absorptiometry and micro-computed tomography in 2-year-old α-TTP-KO and wild-type (WT) male and female mice fed dl-α-tocopherol acetate. In contrast to our expectations, differences in cancellous bone were not detected between WT and α-TTP-KO mice of either gender, and α-TTP-KO males had lower (p<0.05) cortical bone mass than WT males. We therefore evaluated bone mass, density, and microarchitecture in proximal femur of skeletally mature (8.5-month-old) male Sprague–Dawley rats fed diets containing low (15IU/kg diet), adequate (75IU/kg diet), or high (500IU/kg diet) dl-α-tocopherol acetate for 13 weeks. Low dietary α-tocopherol did not increase bone mass. Furthermore, no reductions in cancellous or cortical bone mass were detected with high dietary α-tocopherol. Failure to detect increased bone mass in aged α-TTP-KO mice or bone changes in skeletally mature rats fed either low or high levels of α-tocopherol does not support the hypothesis that α-tocopherol has a negative impact on bone mass, density, or microarchitecture in rodents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.