Abstract

FDA guidance for food contact substances recommends that for food packaging intended for use at sterilized, high temperature processed, or retorted conditions, a migration test with a retort step at 121 °C for 2 h followed by a 10 day migration test at 40 °C should be performed. These conditions are in intended to simulate processing and long-term storage. However, can coatings may be in contact with food for years, and there are very few data evaluating if this short-term testing accurately simulates migration over extended time periods. A long-term migration test at 40 °C with retorted and non-retorted polyester cans using several food simulants (water, 3% acetic acid, 10% ethanol, 50% ethanol, and isooctane) was conducted to verify whether traditional migration testing protocols accurately predict migration from food contact materials used for extended time periods. Time points were from 1 day to 515 days. HPLC-MS/MS was used to analyze polyester monomers, and oligomer migration was monitored using HPLC-DAD/CAD and HPLC-MS. Concentrations of monomers and oligomers increased during the migration experiments, especially in ethanol food simulants. The data suggest that current FDA migration protocols may need to be modified to address changes in migrants as a result of long-term storage conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call