Abstract

Recombinant tissue plasminogen activator (rt-PA) has proven effective in the treatment of acute ischemic stroke, despite the increased risk of hemorrhagic transformation (HT), its major associated complication. Although it is known that HT is related to blood brain barrier (BBB) disruption, the underlying mechanisms are not well established. We assessed time-dependent effects of rt-PA on the bEnd.3 murine brain endothelial cell line subjected either to normoxia or to 2.5 h of oxygen and glucose deprivation (OGD), evaluating a longer period than has previously been done, beyond 6 h post-reoxygenation. Parameters of cell viability, metabolic activity, ionic and transcellular permeability, as well as levels of claudin-5, zonula occludens-1 (ZO-1) and bradykinin B2 receptor (B2R) protein expression were analyzed at 24, 48 and 72 h post-reoxygenation with or without the administration of rt-PA. rt-PA treatment increased both the ionic and transcellular permeability until 72 h and did not modify cell viability or metabolic activity or the expression of claudin-5, ZO-1 and B2R under normoxia at any analyzed time. Under OGD conditions, rt-PA exacerbated OGD effects on metabolic activity from 48 to 72 h, increased transcellular permeability from 24 to 72 h, significantly decreased ZO-1 protein levels at the plasma membrane and increased B2R glycosylation at 72 h post-reoxygenation. Our findings suggest that a long-term analysis is necessary to elucidate time-dependent molecular mechanisms associated to BBB breakdown due to rt-PA administration under ischemia. Thus, protective BBB therapies after ischemic stroke and rt-PA treatment should be explored at least until 72 h after OGD and rt-PA administration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.