Abstract

Sediment microbial fuel cells (SMFCs) are expected to be used as a renewable power source for remote environmental monitoring; therefore, evaluation of their long-term power performance is critical for their usability. In this paper, we present novel data needed to understand the long-term performance of SMFCs. We used 3-D Microemulsion (3DMe)™ doped anodes, which slowly release lactate and its fermented products. During our tests, anode-limited SMFCs with and without 3DMe-doped anodes were operated for more than 18months with a load simulating a sensor operation. We found that doping an anode with an electron donor reduced startup time and increased maximum power (55±2μW compared to 46±2μW) in the control systems. We found that the long-term steady power performance is approximately 33% of the maximum power (∼18μW). Finally, our small-sized SMFCs generated higher power densities than those in the literature (28mW/m2 versus 4mW/m2). Using electron donor doped anodes can be practical when a short startup time and initial high power are needed. However, if long-term power is critical, the addition of an electron donor does not provide a practical advantage. In addition, in long-term operation enrichment of the anode surface with electrochemically active bacteria does not provide any advantage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.