Abstract

High tissue contrast in magnetic resonance imaging (MRI) allows better radiotherapy planning. However, geometric distortion in MRI induces inaccuracies affecting such planning, making it necessary to evaluate the characteristics of such geometric distortion. Although many studies have considered geometric distortion, most of these involved measurements performed only a few times. In this study, we evaluated MRI device-specific geometric distortion over long term and measured its variation by using an automatic analysis tool. The result showed that geometric distortion increased with distance from the center along both lateral and longitudinal directions. Specifically, the average distortion rate and average diameter error over the full measurement period increased by up to 1.02% and 1.96 mm, respectively, when using T1 weighted Image (WI) 3D fast spoiled gradient echo (FSPGR) at R15. In the case of T2 WI 2D fast spin echo (FSE) at R15, the standard deviation of the distortion rate and diameter error increased up to 0.38%, 0.72 mm, respectively. We conclude that periodic quality assurance of geometric distortion should be performed in order to maintain geometric distortion within allowable values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call