Abstract

Breeders have found field screening for onion white rot resistance to be unreliable since consistently moderate to high disease levels that significantly differentiate cultivars, do not occur over field sites and years. The objective was to see if a greenhouse or laboratory technique could predict field reaction of onion accessions. Onion (Allium cepa) accessions were grown in fields naturally infested with the white rot causing fungus (Sclerotium cepivorum) in 1999 and 2000 (New Zealand) and in 2000 and 2001 (Canada). The field disease levels were low at three sites, moderate at two and high at one. Field screening was not a reliable predictor of white rot reaction when disease incidence was low. Onion accessions were screened for resistance in the greenhouse using nonsterile muck soil (NSMS) and sterile muck soil (SMS) with S. cepivorum sclerotia as the inoculum source. Total disease incidence was significantly higher in the NSMS compared to the SMS and accessions showed significant variability for white rot reaction in both soils. Two laboratory-based techniques were used to test the effect of onion volatiles on mycelium growth in culture. The volatiles from susceptible accessions resulted in faster radial growth of S. cepivorum mycelium (on water agar) and height of aerial mycelium (on potato dextrose agar) than volatiles from resistant accessions. Disease incidence in the greenhouse, S. cepivorum culture growth rates on water agar media and aerial mycelial height were all good predictors of field disease incidence in a covariance analysis. The best predictor was aerial mycelial height, which was predictive of field disease incidence in four out of six field sites. Onion breeders can use the methods described in this study in breeding for white rot resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.