Abstract

BackgroundThe effect of hepatic steatosis on the gradient-echo (GRE) based Modified Look-Locker Inversion Recovery (MOLLI) technique for T1 mapping has not been evaluated. The purpose of this study was to evaluate a GRE based MOLLI technique for hepatic T1 mapping and determine the relationship of T1 differences (ΔT1) on in-phase (IP) and out-of-phase (OP) to fat fraction (FF) measurement. Materials and methods3 T MRI included MOLLI T1 mapping with TE = 1.3 (OP), 2.4 (IP), and 1.8 ms, and chemical-shift-encoded sequence with spectral modeling of fat to generate FF map as a reference. Bloch simulations and oil/water phantoms were used to characterize the response of the MOLLI T1 in various FF < 30% since MOLLI T1 estimation was erratic beyond this limit. Curve fit between ΔT1 and FF from simulation was applied to validate the phantom and the in-vivo results. Thirty-eight normal volunteers were included (16 women, Age 44 ± 12 years, BMI 27 ± 5.3 kg/m2). MOLLI water images were reconstructed by the average of OP and IP images, and the T1 values on water images served as the reference for T1 bias calculation defined as the percent difference between OP, IP, TE = 1.8 ms and the referenced water T1. Linear regression was performed to correlate the FF quantified by the reference and MOLLI methods. ResultsPhantom results were consistent with the Bloch simulations. The simulated relationship between FF (0–30%) and ΔT1 could be modeled precisely by a cubic equation with R2 = 1. In-vivo MOLLI ΔT1 and estimated FF were correlated to the reference FF (both R2 ≥ 0.96 and P < 0.001). TE = 1.8 ms demonstrated less T1 bias (−1.34%) compared to TE = OP (5.32%) or IP (−3.8%, both P < 0.001). ConclusionAt 3 T, TE of 1.8 ms can be used to reduce the T1 bias and deliver consistent T1 values when FF is <30%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call