Abstract
We hypothesized that liver fatty acid oxidation (FAO) is compromised in the leptin-deficient obese (Lepob/Lepob) mouse model, and that this would be further challenged when these mice were fed a high-fat diet. Obese mice had a 3.8-fold increased body fat content and a 9-fold increased liver fat content as compared to control mice when both groups were fed a low-fat diet. The expression of liver FAO enzymes, carnitine palmitoyltransferase-1a, long-chain acyl-CoA dehydrogenase, medium-chain acyl-CoA dehydrogenase, and short-chain acyl-CoA dehydrogenase, was not affected in obese mice as compared to controls on either a low-fat or a high-fat diet. The expression of very-long-chain acyl-CoA dehydrogenase was elevated in obese mice on the control diet, as compared to control mice. For all measures evaluated, increasing the level of fat in the diet had a smaller effect than leptin deficiency. In summary, despite obese mice having an excess of fat available for mitochondrial β-oxidation in liver, overall energy balance appeared to dictate that the net liver FAO remained at control levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.