Abstract

The paper focuses on evaluating the stress on distribution class surge arresters (SAs) caused by lightning strikes. It proposes a procedure for estimating the statistical distribution of energy absorbed by SAs due to both indirect and direct lightning strikes, which is a crucial step for assessing the probability of SAs failure. Two different SA representations are considered, namely, a static nonlinear resistance and a dynamic, frequency dependent model. After analyzing the overvoltage and current waveforms caused by lightning strikes and considering the effect of flashover occurrence, the paper assesses the effect of several factors on the current and energy absorption, namely the presence of a periodically grounded shield wire, of the grounding resistance value, and of the distance between subsequent SAs. The analysis shows that the static model can be considered accurate enough for evaluating the stress originated by direct and indirect lightning on distribution class SAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.