Abstract

Aedes aegypti is the vector responsible for transmitting pathogens that cause various infectious diseases, such as dengue, Zika, yellow fever, and chikungunya, worrying health authorities in the tropics. Due to resistance of mosquitoes to synthetic insecticides, the search for more effective insecticidal agents becomes crucial. The aim of this study was to verify the larvicidal, adulticidal, and anticholinesterase activities of the essential oils of the Illicium verum (EOIV), Pimenta dioica (EOPD), and Myristica fragrans (EOMF) against Ae. aegypti. The essential oils (EOs) were obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). The larvicidal and adulticidal activities of EOs were evaluated against third instar larvae and Ae. aegypti adult females, respectively, using the procedures of the World Health Organization (WHO) and the anticholinesterase activity of the EOs by the modified Ellman method. The following major components were identified: (E)-anethole (90.1%) for EOIV, methyl eugenol (55.0%) for EOPD, and sabinene (52.1%) for EOMF. All EOs exhibited larvicidal and adulticidal activity against Ae. aegypti. The highest larval mortality was observed in EOMF with LC50 = 28.2μgmL-1. Adult mortality was observed after 1 (knockdown) and 24h exposure, with the highest potential established by the EOIV, KC50 = 7.3μgmg female-1 and LC50 = 10.3μgmg female-1. EOIV (IC50 = 4800μgmL-1), EOMF (IC50 = 4510μgmL-1), and EOPD (IC50 = 1320μgmL-1) inhibited AChE. EOMF (4130μgmL-1) and EOPD (IC50 = 3340μgmL-1) inhibited BChE whereas EOIV showed no inhibition. The EOs were toxic to larvae and adults of Ae. aegypti, as well as being less toxic to humans than the currently used insecticides, opening the possibility of elaboration of a natural, safe, and ecological bioinsecticide for vector control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call