Abstract

Large-scale injections of CO 2 into subsurface saline aquifers have been proposed to remediate climate change related to buildup of green house gases in the atmosphere. The pressure buildup caused by such injections may impact a volume of the basin significantly larger than the CO 2 plume itself. In areas with hydrological settings similar to the Gulf Coast Basin, the perturbation of the flow-field in deep parts of the basin could result in brines or brackish water being pushed up-dip into unconfined sections of the same formations or into the capture zone of fresh-water wells. The premise of the current study is that the details of multiple-phase flow processes necessary to model the near field evolution of the CO 2 plume are not necessary to describe the impact of the pressure anomaly on up-dip aquifers. This paper quantitatively explores conditions under which shallow groundwater would be impacted by up-dip displacement of brines, utilizing an existing carefully calibrated flow model. Modeling an injection of water, arguably equivalent to 50 million tons of CO 2/year for 50 years resulted in an average water-table rise of ∼1 m, with minor increase in stream baseflow and larger increase in ground water evapotranspiration, but no significant change in salinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.