Abstract

This paper evaluated the probability of landslide susceptibilities through the applica-tion of the Transient Rainfall Infiltration and Grid-Based Region Slope-Stability model in Cau river basin (Vietnam) using the scenarios-based approach under the influence of the warming climate. The tested cases were developed based on various options including rainfall amount and distribution, soil depth determination, and land-cover conditions. Input data for extreme rain events included historical rainstorm in 2013, the Probable Maximum Precipitation (PMP) with the durations of 24 hours and 48 hours. The results illustrated the reduction of slope stability when the land cover changed from land-use data in 2007 (Ha12) to land-use data in 2015 (Ha22). When the whole region was assumed to be replaced by soil (Ha02), the factor of safety (Fs) decreased to lower magnitude when compared to Fs value regarding to changes in land cover condition (Ha12 & Ha22) and changes in soil-depth (Ha33). The model simulations demonstrated the agreement with the slope-failure hazard association with the destabilizing factor such as slope-cutting activities at historical landslide events. Under the same land-cover and soil depth condition, the average value of factor of safety regarding to the historical rainstorm in 2013 (Ha32) declined by 0.069 and 0.189 when compared to Fs of the 24-hour PMP with the storm distribution type 3 (1332) and Fs of the 48-hour PMP with the storm distribution type 3 (2332), respectively. The results reveal that in a warming climate, changes in extreme precipitation in terms of rain-total, rain-duration, and rain-distribution would result in the expansion of slope instability in the hilly region. This application is considered as a prevailing method for landslide susceptibility analysis and would provide important information for authorities in developing adequate land-management in the river basin.

Highlights

  • Vietnam, a tropical country locating within the Southeast Asian typhoon belt, often suffered from tropical cyclones and depressions annually

  • Heavy rain in 2013 resulted in a great number of landslide occurrences across the region; for example, according to the report of Bac Kan province, the road 258 from Bac Kan to Ba Be with the length of 40 km was closed in 1 month and was rehabilitated in about 3 months as a consequence of landslide occurrences triggering after the downpour in the late of May 2013

  • Despite the fact that the investigation was implemented through the transect walks method across traffic routes in this province, and the landfall often associated with slope-cut activities; this database of landslides still provided important references for the study of sliding issues in the study area

Read more

Summary

Introduction

A tropical country locating within the Southeast Asian typhoon belt, often suffered from tropical cyclones and depressions annually. Being parallel with the requirements of economic development and population pressure in Northeast region, a large number of arteries connecting residential zones have been constructing and rehabilitating in such hilly region. Exploiting activities from mining, deforestation and infrastructure constructions in mountainous areas have led to the increase of bared land on hill-sides. High rainfall intensities in addition to human interferences in the natural slope condition (slope-cut and tree-cutting on hilly sites), and changes in land cover condition are major triggers to the landfall occurrences in this area. The expansion of the development activities could lead to the rise in slope failures especially during triggering events such as prolonged extreme precipitation, which has been influenced greatly by climate change

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call