Abstract

The MODIS/ASTER (MASTER) airborne simulator which has fifty bands in the visible to the thermal-infrared spectral regions was developed mainly to support the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) and the Moderate resolution Imaging Spectroradiometer (MODIS) instrument teams in the areas of algorithm development, calibration and validation, but its wide spectral capability is also useful for other studies such as geology, environmental monitoring, and land management. Currently, only MASTER product distributed to users is a level-1B at-sensor radiance product, so that if a user needs surface reflectance and/or emissivity/temperature, the user should apply atmospheric correction to a level-1B product. Thus in the present study, we derived surface reflectance and emissivity spectra from MASTER data acquired over Railroad Valley Playa, NV/USA, by atmospheric correction with various atmospheric sources like Aerosol Robotic Network (AERONET) products, and then compared with in-situ measured spectra for both reflective and emissive regions. Calibration errors in the reflective region which caused discrepancy from the in-situ spectra were reduced by adjusting the MASTER radiance to ASTER and MODIS radiances at the top of the atmosphere. We also compared the spectral similarity in the reflective region versus that in the emissive region, for MASTER spectra, and the spectra of ASTER spectral library and in-situ spectra, as an example of discrimination analysis using both reflective and emissive bands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call